Synthetic Photochemistry. L.¹⁾ Isolation and the X-Ray Structure Determination of Photocyclodimers Formed by UV-Light Irradiation of Alkyl 2,4-Dioxopentanoates

Akira Mori,* Nobuaki Nishiyama,† Yukiko Kohguchi, Hisayo Shinka, and Hitoshi Takeshita*
Institute of Advanced Material Study, 86, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816
†Instrumental Analyses Center, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816
(Received October 19, 1988)

Synopsis. Upon UV-light irradiation with a high-pressure mercury lamp, methyl 2,4-dioxopentanoate in a mixture of benzene and cyclohexane afforded a crystalline head-to-head-[2+2]cyclodimer. Its structure was elucidated by a single-crystal X-ray analysis, as well as ¹H and ¹³C NMR spectroscopy. Ethyl 2,4-dioxopentanoate also gave a cyclodimer

The de Mayo reaction²⁾ has been regarded as one of the most synthetically useful photocycloaddition reactions. Among the previously-studied β -diketone photocycloaddends, alkyl 2,4-dioxoalkanoates,³⁾ being fully enolized in various solvents, have a characteristic reactivity to form regiospecific [2+2]cycloadducts with conjugated olefins, and to give useful intermediates for natural product syntheses.⁴⁾ Herein, we wish to report the isolation and structure determination of head-to-head-[2+2]dimers.

When methyl 2,4-dioxopentanoate (la) was irradiated by means of a 400-W high-pressure mercury lamp through a Pyrex glass filter in a mixture of benzene and cyclohexane, a colorless crystalline product (2a)

Me hv
$$H_0$$
 H_0 H_0

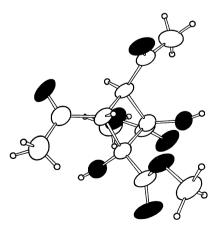


Fig. 1. The ORTEP drawing of 2a. Dark atoms denote the oxygen atoms.

was formed and isolated by filtration. Its mass spectrum indicated its molecular composition to be dimeric, and the ¹H and ¹³C NMR strongly suggested the presence of a symmetry element in the molecule. Presumably, **2a** is, therefore, a [2+2]cyclodimer. From the mechanism of photoaddition, the cis relationship for the acetyl and hydroxy groups was expected,^{5,6} though the syn- or anti-stereochemistry could not be determined. Unfortunately, spectroscopic differentiation at this point failed; i.e., an ¹H NMR satellite band due to the ¹³C-H coupling could not be detected, or an attempt to measure lanthanoid-induced chemical shift change caused a decompostion of **2a**.

Therefore, an X-ray structure analysis with a single crystal of 2a was carried out (see Experimental): The molecular structure obtained by the analysis was displayed as a computer-generated drawing (Fig. 1).

Similar irradiation of ethyl 2,4-dioxopentanoate (1b) gave a homologous cyclodimer (2b) in 10% yield. From the ¹H NMR spectral similarity it is certain that 2b and 2a have the same stereochemistry.

Previously, no dimer of free enolized β -diketones have been detected, although a cyclodimer of dehydroacetic acid reacted at the β -acyloxy enone moiety.⁷ This is particularly interesting since none of the protophotoadducts from ordinary 2,4-diketoalkanes with olefins has been known. On the other hand, from the 2,4-dioxoalkanoates, several proto-cycloadducts have been characterized; i.e., a) the [2+4]- and [2+6]photocycloadducts, from conjugated olefins, were normally stable and not dealdolyzed under mild conditions^{6,8)} and b) as a [2+2]cycloadduct, the protoadduct from p-isopropenyltoluene with la was obtained in a trace amount after silica-gel column chromatography.99 The present case, the isolation of stable compounds having two aldol groups as parts of a strained cyclobutane ring, seems to be quite extraordinary.

Experimental

Photodimerization of la. A mixed solution of benzene (6.5 cm³) and cyclohexane (4.5 cm³) of **la** (884 mg) was irradiated through a Pyrex-glass filter with a 400-W high-pressure mercury lamp cooled with an ice-water for 12 h. Crystalline solid separated out was collected by filtration, and recrystallized from benzene to give **2a** [colorless needles, mp 135—136 °C, 153.4 mg; 17%. Found: C, 50.05; H, 5.71%. Calcd for C₁₂H₁₆O₈: C, 50.00; H, 5.50%. ¹H NMR δ¹⁰=2.20 (6H, s), 3.89 (6H, s), 4.24 (2H, s), and 4.58 (2H, s). ¹³C NMR δ=29.3 (2C), 48.6 (2C), 53.4 (2C), 79.3 (2C), 169.9 (2C), and 205.3 (2C). m/z, 288 (M⁺, 0.7), 271 (4), 201 (8), 169 (12), 159 (14), 145 (23), 143 (9), 141 (23), 99 (33), 84 (37), and 43 (100)].

Photodimerization of 1b. Similarly, irradiation of **1b** (349 mg) gave **2b** [colorless crystals, mp 114—115 °C, 35 mg; 10%. Found: C, 52.78; H, 6.55%. Calcd for C₁₄H₂₀O₈: C,

53.16; H, 6.33%. ¹H NMR δ =1.34 (6H, t, J=7 Hz), 2.28 (6H, s), 4.22 (2H, s), 4.32 (4H, q, J=7 Hz), and 4.45 (2H, br s). ¹³C NMR (acetone- d_6) δ =14.3 (2C), 49.4 (2C), 62.5 (2C), 81.3 (2C), 169.8 (2C), and 203.7 (2C)].

X-Ray Analysis of 2a. Crystal and intensity data were collected on an Enraf-Nonius CAD 4 Diffractometer using Graphite monochromated Mo $K\alpha$ radiation. Crystal data: $C_{12}H_{16}O_8$, M.W., 288.25; monoclinic, Space group, $C_{2/c}$; a=15.6873(9), b=6.4078(4), $c=14.6453(8)\ 10^{-8}$ cm, $\beta=116.23(5)^{\circ}$. $D_c=1.450$ g cm⁻³ for Z=4. The intensities of 3195 reflections were measured and 603 independent reflections within a 2θ angle range of 2° through 54° were used for analysis. The structure was solved by MULTAN 78 and the positional and thermal parameters were refined by a full-matrix least-square method; anisotropic thermal parameters for all non-H atoms and fixed isotropic thermal parameters for H atoms $(4.0 \times 10^{-16} \, \text{cm}^2)$. The final R values were found to be 8.1%.¹¹⁾

The authors with to thank Dr. Hiroaki Mametsuka for his elaboration on a preliminary survey of this work.

References

- 1) Part XLIX: G. R. Tian, A. Mori, H. Takeshita, M. Higashi, and H. Yamaguchi, *Bull. Chem. Soc. Jpn.*, 62, 1567 (1989).
- 2) P. de Mayo and H. Takeshita, Can. J. Chem., 41, 440 (1963); P. de Mayo, Acc. Chem. Res., 4, 41 (1971); S. W.

Baldwin, Org. Photochem., 5, 123 (1981).

- 3) H. Takeshita and S. Tanno, Bull. Chem. Soc. Jpn., 46, 880 (1973).
- 4) H. Takeshita and N. Kato, Yuki Gosei Kagaku Kyokai Shi, 44, 1081 (1986), and the references cited therein.
- 5) Regioselective formation of the photocycloadducts from the exclusive tautomeric form of 1a, methyl 2-hydroxy-4-oxo-2-pentenoate, can be interpreted that even the γ -hydrogen abstraction process by the excited carbonyl of the chelated hydroxyl, a chemical reaction, acuses the deactivation. Under such circumstances, an anti-Franck-Condon geometrical change should not be involved in the dimerization.
- 6) Indeed, the proto-photocycloadducts isolated from cyclopentadiene and la have been established to have this cis relationship. See H. Takeshita, A. Mori, and Y. Toyonaga, Bull. Chem. Soc. Jpn., 48, 307 (1975).
- 7) H. Takeshita, Y. Shoji, and R. Kikuchi, *Bull. Chem. Soc. Jpn.*, **46**, 690 (1973); N. Sugiyama, T. Sato, H. Kataoka, and C. Kashima, *ibid.*, **44**, 555 (1971).
- 8) H. Takeshita, A. Mori, and S. Ito, Bull. Chem. Soc. Jpn., 47, 1767 (1974).
- 9) H. Takeshita, A. Mori, and S. Nakamura, *Bull. Chem. Soc. Jpn.*, **57**, 3152 (1984).
- 10) The NMR spectra were measured with a GSX 270 H Spectrometer, JEOL, in CDCl₃ solution unless otherwise specified.
- 11) The complete F_0 — F_0 data are deposited as Document No. 8865 at the Office of the Editor of Bull. Chem. Soc. Jpn.